Library "MLActivationFunctions"
Activation functions for Neural networks.
binary_step(value) Basic threshold output classifier to activate/deactivate neuron.
Parameters:
value: float, value to process.
Returns: float
linear(value) Input is the same as output.
Parameters:
value: float, value to process.
Returns: float
sigmoid(value) Sigmoid or logistic function.
Parameters:
value: float, value to process.
Returns: float
sigmoid_derivative(value) Derivative of sigmoid function.
Parameters:
value: float, value to process.
Returns: float
tanh(value) Hyperbolic tangent function.
Parameters:
value: float, value to process.
Returns: float
tanh_derivative(value) Hyperbolic tangent function derivative.
Parameters:
value: float, value to process.
Returns: float
relu(value) Rectified linear unit (RELU) function.
Parameters:
value: float, value to process.
Returns: float
relu_derivative(value) RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
leaky_relu(value) Leaky RELU function.
Parameters:
value: float, value to process.
Returns: float
leaky_relu_derivative(value) Leaky RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
relu6(value) RELU-6 function.
Parameters:
value: float, value to process.
Returns: float
softmax(value) Softmax function.
Parameters:
value: float array, values to process.
Returns: float
softplus(value) Softplus function.
Parameters:
value: float, value to process.
Returns: float
softsign(value) Softsign function.
Parameters:
value: float, value to process.
Returns: float
elu(value, alpha) Exponential Linear Unit (ELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.0, predefined constant, controls the value to which an ELU saturates for negative net inputs. .
Returns: float
selu(value, alpha, scale) Scaled Exponential Linear Unit (SELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.67326324, predefined constant, controls the value to which an SELU saturates for negative net inputs. .
scale: float, default=1.05070098, predefined constant.
Returns: float
exponential(value) Pointer to math.exp() function.
Parameters:
value: float, value to process.
Returns: float
function(name, value, alpha, scale) Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
derivative(name, value, alpha, scale) Derivative Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float