v4
Added:
f_triple_regression(y, x1, x2, x3, len)
performs a multiple regression with up to 3 independent variables and 1 dependent variable
Parameters:
y (float)
x1 (float)
x2 (float)
x3 (float)
len (int)
Returns: result, error, p value, r2, coefficients for b1, b2, b3 and intercept (b0)
knn_regression(y, x, len, last_instance_or_cluster_or_avg, clusters, tolerance)
performs up to 3 types of KNN based regression assessments
Parameters:
y (float)
x (float): the independent variable (x), dependent (y), the assessment type in string ("Last Instance" vs "Cluster" vs "Avg"),
# of clusters and tolerance level for looking at clusters within a specified range.
len (int)
last_instance_or_cluster_or_avg (string)
clusters (int)
tolerance (float)
Returns: result, error of estimates, correlation and basic R2
ANOVA(group1, group2, group3, len)
performs a 3 way ANOVA analysis of 3 independent variables. Returns the F Statistic and the significance (P value)
Parameters:
group1 (float)
group2 (float)
group3 (float)
len (int)
Returns: F Statistic and P value
Updated:
f_linear_regression(dependent, independent, len)
creates a simple linear regression model between two variables.
Parameters:
dependent (float)
independent (float)
len (int)
Returns: returns 6 float variables
result: The result of the regression model
pear_cor: The pearson correlation of the regresion model
rsqrd: the R2 of the regression model
std_err: the error of residuals
slope: the slope of the model (coefficient)
intercept: the intercept of the model (y = mx + b is y = slope x + intercept)